Back to projects
FastAPIPydanticOpenAI SDKDockerRailway

Binah-Σ: Cognitive Decision Engine

Enterprise-grade API for structured decision evaluation. Unlike generative chat systems, Binah-Σ produces auditable, structured outputs suitable for enterprise governance, ESG compliance, and policy analysis.

Live API Available

Production-ready cognitive decision infrastructure

View Binah-Σ

Live Demo Video

See Binah-Σ cognitive decision engine in action

Platform Interface

Binah-Σ Decision Analysis Example

Decision Analysis Output

Structured evaluation with metrics

Binah-Σ Logo

Binah-Σ Identity

Cognitive decision infrastructure

Technical Documentation

Download the complete architecture documentation including API specs, deployment guides, and roadmap.

Download Architecture Documentation (MD)
0.92
Avg Binah-Σ Index
100%
Schema Validated
<2s
Response Time
Full
Audit Trail

The Problem

Traditional AI tools produce text output that cannot be audited. For critical decisions in governance, compliance, and finance, organizations need structured, measurable outputs that can be reviewed, compared, and traced.

  • Chatbots produce text, not actionable metrics
  • No audit trail for regulatory compliance
  • Cannot compare decisions systematically over time
  • Consulting is expensive ($50K+) and slow (6 weeks)

The Solution: Structured Decision Evaluation

Binah-Σ is not a chatbot. It's a cognitive infrastructure that decomposes complexity (Binah) and synthesizes coherence (Σ) into measurable outputs.

Traditional AI

  • • Produces text
  • • Not auditable
  • • No metrics
  • • Conversational use case

Binah-Σ

  • • Structured evaluation
  • • Native auditability
  • • Numerical indices (0-1)
  • • Critical decision-making

Architecture

┌─────────────────┐
│   Client/API    │
└────────┬────────┘
         │
         ▼
┌──────────────────────┐
│  FastAPI Gateway     │
│  - CORS              │
│  - Rate Limiting     │
│  - Validation        │
└────────┬─────────────┘
         │
         ▼
┌──────────────────────┐
│  Binah-Σ Engine      │
│  - Prompt Orchestr.  │
│  - LLM Call          │
│  - JSON Enforcement  │
└────────┬─────────────┘
         │
         ▼
┌──────────────────────┐
│  Pydantic Validation │
│  - Schema Check      │
│  - Type Enforcement  │
└────────┬─────────────┘
         │
    ┌────┴────┐
    ▼         ▼
┌────────┐ ┌─────────┐
│Logging │ │ Metrics │
└────────┘ └─────────┘
FastAPI + Async
High concurrency, non-blocking
Pydantic Validation
Strict schema enforcement
LLM Agnostic
Swap OpenAI, Anthropic, local

API Response Schema

FieldType
binah_sigma_index0.0-1.0
binah_sigma_confidence0.0-1.0
decision_coherenceLow|Medium|High
ethical_alignmentAligned|Partial|Misaligned
systemic_riskLow|Medium|High|Critical
key_tensions["string"]
unintended_consequences["string"]
binah_recommendationstring
explanation_summarystring

Primary Use Cases

Corporate Governance
M&A decisions, strategic planning, risk assessment
ESG & Compliance
Policy evaluation, regulatory alignment, EU AI Act
Public Sector
Policy analysis, public program impact assessment
Financial Institutions
High-impact investment decisions, portfolio ethics

Competitive Advantages

Technical

  • Schema-First: Outputs are contracts, not suggestions
  • Vendor Agnostic: Swap LLM providers easily
  • Audit Trail: Every decision is logged
  • Metrics: Build longitudinal quality datasets

Business

  • Not a Chatbot: Critical infrastructure positioning
  • Compliance-Ready: Structured for regulatory review
  • Scalable: Metered API, not seat-based
  • Data Moat: Aggregated decision benchmarks

Example Request

POST /binah-sigma/analyze

{
  "context": "Tech company considering mass layoffs",
  "decision_question": "Should we lay off 30% of workforce?",
  "stakeholders": ["employees", "investors", "customers"],
  "constraints": ["budget deficit", "market pressure"],
  "time_horizon": "6 months"
}

Ready for Auditable AI Decisions?

Binah-Σ is production-ready. Integrate structured decision evaluation into your enterprise workflow.

BETA